Abstract

A difluorenylsuccinonitrile-(DFSN)-based linker, whose central C-C bond is readily cleaved under mechanical stress to generate a relatively stable pink radical species, was introduced into polymer networks. DFSN-based cross-linked polymers exhibit improved mechanical properties as compared to those of the corresponding covalently cross-linked polymers owing to the energy dissipation induced by cleavage of the central DFSN bond. The toughening mechanism of DFSN-based elastomers is qualitatively visualized by the intensity of the pink color and can be quantitatively characterized by electron paramagnetic resonance. These results demonstrate that the extent of DFSN cleavage is the main factor improving the mechanical properties of the polymer networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.