Abstract
The cell-free layer is defined as the parietal plasma layer in the microvessel flow, which is devoid of red blood cells. The measurement of the in vivo cell-free layer width and its spatiotemporal variations can provide a comprehensive understanding of hemodynamics in microcirculation. In this study, we used an intravital microscopic system coupled with a high-speed video camera to quantify the cell-free layer widths in arterioles in vivo. The cremaster muscle of Sprague-Dawley rats was surgically exteriorized to visualize the blood flow. A custom-built imaging script was also developed to automate the image processing and analysis of the cell-free layer width. This approach enables the quantification of spatiotemporal variations more consistently than previous manual measurements. The accuracy of the measurement, however, partly depends on the use of a blue filter and the selection of an appropriate thresholding algorithm. Specifically, we evaluated the contrast and quality of images acquired with and without the use of a blue filter. In addition, we compared five different image histogram-based thresholding algorithms (Otsu, minimum, intermode, iterative selection, and fuzzy entropic thresholding) and illustrated the differences in their determination of the cell-free layer width.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.