Abstract

Cylindrical structures are widely used in offshore and marine engineering, but they may suffer from vortex-induced vibration under the influence of ocean or wave currents, which can lead to severe fatigue damage. In this study, we applied the open-source software Open-Source Field Operation and Manipulation (OpenFOAM) to investigate the characteristics of fluid flow around offshore cylindrical structures, taking into account the effect of helical strake parameters, such as pitch and strake number. The aim of this study is to explore the possibility of suppressing vortex shedding with different helical strake parameters. Numerical simulation results demonstrated that attaching a helical strake to the bare cylinder destroyed vortex shedding in offshore cylindrical structures. The vortex visualization showed that the helical strake destroyed the three-dimensional vortex structures. Moreover, the lift coefficient data showed that the vibration frequency of the cylinder decreased after attaching the helical strake, indicating that the vortex-induced vibrations on the wake flow tended to fade. The results suggest that the helical strake is a promising option for suppressing the wake vortex shedding of cylindrical structures in offshore engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call