Abstract

Understanding the phenomena which occur inside a solid oxide cell in operation is important in the development of more efficient devices. However, it is difficult to experimentally visualize the distribution of the internal power generation state due to the very high temperature operation. In this study, the performance of a reversible solid oxide cell (r-SOC) was simulated to visualize current-voltage (I-V) characteristics and internal temperature distribution. The validity of the model was verified by comparing with the I-V characteristics and temperature distribution experimentally measured by an actual cell. The establishment of this technique will eventually enable the simulation of cell stacks and systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.