Abstract

The development of molecular machines has long been a dream of scientists and is expected to revolutionize many aspects of technology and medicine. As the prerequisite of a practicable molecular machine, studies on the solid-state molecular motion (SSMM) are not only of scientific importance but also practically useful. Herein, two nonconjugated molecules, 1,2-diphenylethane (s-DPE) and 1,2-bis(2,4,5-trimethylphenyl)ethane (s-DPE-TM), are synthesized, and their SSMM is investigated. Experimental and calculation results reveal that s-DPE and s-DPE-TM are capable of performing light-driven SSMM to form excited-state through-space complexes (ESTSC). The radiative decay of ESTSC generates an unexpected visible emission termed clusteroluminescence, which serves as a tool to visualize the process of SSMM. Meanwhile, the original packing structure can be recovered from ESTSC after the removal of light irradiation. This work provides a new strategy to manipulate and "see" the SSMM and gains new insights into clusteroluminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.