Abstract

Electrostatically defined quantum dots (QDs) in Bernal stacked bilayer graphene (BLG) are a promising quantum information platform because of their long spin decoherence times, high sample quality, and tunability. Importantly, the shape of QD states determines the electron energy spectrum, the interactions between electrons, and the coupling of electrons to their environment, all of which are relevant for quantum information processing. Despite its importance, the shape of BLG QD states remains experimentally unexamined. Here we report direct visualization of BLG QD states by using a scanning tunneling microscope. Strikingly, we find these states exhibit a robust broken rotational symmetry. By using a numerical tight-binding model, we determine that the observed broken rotational symmetry can be attributed to low energy anisotropic bands. We then compare confined holes and electrons and demonstrate the influence of BLG's nontrivial band topology. Our study distinguishes BLG QDs from prior QD platforms with trivial band topology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.