Abstract
Although model selection is ubiquitous in scientific discovery, the stability and uncertainty of the selected model is often hard to evaluate. How to characterize the random behavior of the model selection procedure is the key to understand and quantify the model selection uncertainty. To this goal, initially several graphical tools are proposed. These include the G-plots and H-plots, to visualize the distribution of the selected model. Then the concept of model selection deviation to quantify the model selection uncertainty is introduced. Similar to the standard error of an estimator, model selection deviation measures the stability of the selected model given by a model selection procedure. For such a measure, a bootstrap estimation procedure is discussed and its desirable performance is demonstrated through simulation studies and real data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.