Abstract

Most processes in the cell are delivered by protein complexes, rather than individual proteins. While the association of proteins has been studied extensively in protein-protein interaction networks (the interactome), an intuitive and effective representation of complex-complex connections (the complexome) is not yet available. Here, we describe a new representation of the complexome of Saccharomyces cerevisiae. Using the core-module-attachment data of Gavin et al. ( Nature 2006 , 440 , 631 - 6 ), protein complexes in the network are represented as nodes; these are connected by edges that represent shared core and/or module protein subunits. To validate this network, we examined the network topology and its distribution of biological processes. The complexome network showed scale-free characteristics, with a power law-like node degree distribution and clustering coefficient independent of node degree. Connected complexes in the network showed similarities in biological process that were nonrandom. Furthermore, clusters of interacting complexes reflected a higher-level organization of many cellular functions. The strong functional relationships seen in these clusters, along with literature evidence, allowed 44 uncharacterized complexes to be assigned putative functions using guilt-by-association. We demonstrate our network model using the GEOMI visualization platform, on which we have developed capabilities to integrate and visualize complexome data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.