Abstract

The peripheral drift illusion (e.g. Rotating snake [1]) yields rotating motion on our peripheral vision. It was reported that the order of different four luminance regions is essential for the illusion [1]. Moreover, Conway et al. have suggested that luminance or contrast dependent latency in response of V1/MT direction selective cells for those kinds of luminance (black, dark-gray (blue), light-gray (yellow), and white) was contributed on perception of the rotating illusory motion [2]. In the present work, we modeled V1 and MT as a retinotopic map using those direction selective cells [2] and investigated whether this model can reproduce the rotating illusory motion.

Highlights

  • The peripheral drift illusion (e.g. Rotating snake [1]) yields rotating motion on our peripheral vision

  • The input stimulus image was divided into four luminance regions (black, dark gray, light gray, and white); the neuronal responses were separately computed in each region

  • In the present study, we modeled the V1 and MT direction selective cells based on the single unit data, and created the retinotopic map of V1 and MT

Read more

Summary

Introduction

The peripheral drift illusion (e.g. Rotating snake [1]) yields rotating motion on our peripheral vision. Models The model of V1 and MT were constructed as a retinotopic map of those direction selective cells. The temporal responses of V1 and MT direction selective cells were estimated from the Conway’s single unit data [2] using regression analysis and were parameterized for either contrast or luminance.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.