Abstract

Parkinson’s disease (PD) lacks a definitive diagnosis, with the observation of motion patterns being the main method of characterizing disease progression and planning patient treatments. Among PD observations, gait motion patterns, such as step length, flexed posture, and bradykinesia, support the characterization of disease progression. However, this analysis is usually performed with marker-based protocols, which affect the gait and localized segment patterns during locomotion. This work introduces a 3D convolutional gait representation for automatic PD classification that identifies the spatio-temporal patterns used for classification. This approach allows us to obtain an explainable model that classifies markerless sequences and describes the main learned spatio-temporal regions associated with abnormal patterns in a particular video. Initially, a spatio-temporal convolutional network is trained from a set of raw videos and optical flow fields. Then, a PD prediction is obtained from the motion patterns learned by the trained model. Finally, saliency maps, which highlight abnormal motion patterns, are obtained by retro-propagating the output prediction up to the input volume through two different stages: an embedded back-tracking and a pseudo-deconvolution process. From a total of 176 videos from 22 patients, the resulting salient maps highlight lower limb patterns possibly related to step length and speed. In control subjects, the saliency maps highlight the head and trunk posture. The proposed approach achieved an average accuracy score of 94.89%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call