Abstract
The paper deals with the analysis of Research and Technology Development (RTD) in the Central European countries and the relation of RTD with economic and social parameters of coun- tries in this region. A methodology has been developed for quantitative and qualitative ranking and estimates of relationship among multidimensional objects on the base of such analysis. The knowl- edge has been discovered in four databases: two databases of European Commission (EC) contain- ing data on the RTD activities, databases of USA CIA and The World bank containing economic and social data. Data mining has been performed by means of visual cluster analysis (using the non-linear Sammon's mapping and Kohonen's artificial neural network - the self-organising map), regression analysis and non-linear ranking (using graphs of domination). The results on clustering of the Central European countries and on the relations among RTD parameters with economic and social parameters are obtained. In addition, the data served for testing various features of realisation of the self-organising map. The integration of non-classical methods (the self-organising map and graphs of domination) with classical ones (regress analysis and Sammon' mapping) increases the capacity of visual analysis and allows making more complete conclusions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.