Abstract

A recently developed ultra-resolving near-field infrared nanoscope is applied to investigate methyl methacrylate embedded, un-decalcified human bone sections. Results show detail at a resolution of 30 nm. Specific contrasting of mineral components is enabled by choosing an appropriate infrared wavelength, here 9.47 μm, in the phosphate vibrational band. The method is surface-sensitive, probing to a depth of about 30 nm into the surface. The obtained infrared images are presented in direct comparison with optical and electron micrographs of the identical specimen. Lamellar bone organization, peri-cellular mineral deposition, and regional differences in mineral content are clearly detectable. Individual fibrils are resolved. - Infrared nanoscopy requires just standard hard tissue preparation techniques combined with section surface polishing. It can be integrated into existing laboratory environments without impeding subsequent routine staining and evaluation methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.