Abstract

The focus in macromolecular crystallography is moving towards even more challenging target proteins that often crystallise on much smaller scales and are frequently mounted in opaque or highly refractive materials.[1,2] It is therefore essential that X-ray beamline technology develops in parallel to accommodate such difficult samples. In this poster the use of X-ray microradiography and microtomography is reported as a tool for crystal visualisation, location and characterization on the macromolecular crystallography beamlines at the Diamond Light Source. The technique is particularly useful for microcrystals, and crystals mounted in opaque materials such as lipidic cubic phase. X-ray diffraction raster scanning can be used in combination with radiography to allow informed decision-making at the beamline prior to diffraction data collection. It is demonstrated that the X-ray dose required for a full tomography measurement is similar to a diffraction grid scan. However, for sample location and shape estimation alone, just a few radiographic projections may be required; hence reducing the dose the crystals will be exposed to prior to the diffraction data collection.[3]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.