Abstract

This paper introduces a technique to visualise the information content of the kernel matrix and a way to interpret the ingredients of the Support Vector Regression (SVR) model. Recently, the use of Support Vector Machines (SVM) for solving classification (SVC) and regression (SVR) problems has increased substantially in the field of chemistry and chemometrics. This is mainly due to its high generalisation performance and its ability to model non-linear relationships in a unique and global manner. Modeling of non-linear relationships will be enabled by applying a kernel function. The kernel function transforms the input data, usually non-linearly related to the associated output property, into a high dimensional feature space where the non-linear relationship can be represented in a linear form. Usually, SVMs are applied as a black box technique. Hence, the model cannot be interpreted like, e.g., Partial Least Squares (PLS). For example, the PLS scores and loadings make it possible to visualise and understand the driving force behind the optimal PLS machinery. In this study, we have investigated the possibilities to visualise and interpret the SVM model. Here, we exclusively have focused on Support Vector Regression to demonstrate these visualisation and interpretation techniques. Our observations show that we are now able to turn a SVR black box model into a transparent and interpretable regression modeling technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.