Abstract
We present bundle-adjusting Neural Radiance Fields (BARF) with motion priors. Neural Radiance Field (NeRF) has opened up tremendous potential for neural volume rendering and 3D scene representations in recognition of their ability to synthesize photo-realistic novel views. BARF mitigates NeRF’s reliance on accurate 6-DoF camera poses, enabling scene learning with inaccurate camera poses. However, initializing estimates far from an optimal solution, such as BARF, can easily fall into local minima. We utilize Visual-Inertial Odometry Motion Priors to the BARF, which jointly optimizes 3D scene representations and camera poses, providing higher accuracy in view synthesis and a more stable motion estimate. The proposed method achieves results that outperform original BARF in real-world data, demonstrating the effectiveness of motion priors to knowledge use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.