Abstract

In daily life, people frequently need to observe dynamic objects and temporarily maintain their representations in visual working memory (VWM). The present study explored the mechanism underlying the binding between perceptual features and locations of dynamic objects in VWM. In three experiments, we measured and compared the memory performance for feature-location binding of multiple dynamic and static objects. The results showed that the feature-location binding was impaired for the dynamic objects compared with the static objects. The impairment persisted when the global spatial configuration of the objects remained intact during the motion, as well as when the binding task was relatively easy, such as binding between single-feature objects and coarse locations. The results indicate that object features and locations are not maintained in VWM as well-integrated object files; rather, the formation of feature-location binding may require additional processes, which are disrupted by the constant change of locations in dynamic circumstances. We propose a consolidation process as possible underlying mechanism, and discuss factors that may influence the strength of feature-location binding in dynamic circumstances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call