Abstract

We present a visual tracking method with feature fusion via joint sparse presentation. The proposed method describes each target candidate by combining different features and joint sparse representation for robustness in coefficient estimation. Then, we build a probabilistic observation model based on the approximation error between the recovered candidate image and the observed sample. Finally, this observation model is integrated with a stochastic affine motion model to form a particle filter framework for visual tracking. Furthermore, a dynamic and robust template update strategy is applied to adapt the appearance variations of the target and reduce the possibility of drifting. Quantitative evaluations on challenging benchmark video sequences demonstrate that the proposed method is effective and can perform favorably compared to several state-of-the-art methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.