Abstract
Sparse coding methods have achieved great success in visual tracking, and we present a strong classifier and structural local sparse descriptors for robust visual tracking. Since the summary features considering the sparse codes are sensitive to occlusion and other interfering factors, we extract local sparse descriptors from a fraction of all patches by performing a pooling operation. The collection of local sparse descriptors is combined into a boosting-based strong classifier for robust visual tracking using a discriminative appearance model. Furthermore, a structural reconstruction error based weight computation method is proposed to adjust the classification score of each candidate for more precise tracking results. To handle appearance changes during tracking, we present an occlusion-aware template update scheme. Comprehensive experimental comparisons with the state-of-the-art algorithms demonstrated the better performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.