Abstract
In this letter, we extend the first-order Markov chain model commonly used in visual tracking and present a novel framework of visual tracking using high-order Monte Carlo Markov chain. By using graphical models to obtain conditional independence properties, we derive a general expression for the posterior density function of an <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">m</i> th-order hidden Markov model. We subsequently use Sequential Importance Sampling (SIS) to estimate the posterior density and obtain the high-order particle filtering algorithm for visual object tracking. Experimental results demonstrate that the performance of our proposed algorithm is superior to traditional first-order particle filtering (i.e., particle filtering derived based on first-order Markov chain).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.