Abstract

Visual thalamocortical projections of neonatally enucleated and control rats were studied after tracer injections into the striate and peristriate areas of adult pigmented rats. The distribution of retrogradely labeled neurons in the visual thalamic nuclei was mapped after (a) small localized injections of horseradish peroxidase into either area 17, 18, or 18a and (b) simultaneous injections of three different retrograde tracers (fast blue, HRP, and diamidino yellow) into the anterior, medial, and posterior regions of area 17. It was shown in both normal and neonatally enucleated rats, that the dorsal lateral geniculate nucleus projects to the striate cortex (area 17), whereas the laterodorsal thalamic nucleus of the lateral thalamus projects to the medial peristriate area 18, and the lateral posterior thalamic nucleus has a projection to the lateral peristriate area 18a. Additionally, both extrageniculate visual thalamic nuclei project to area 17. Neurons in the dorsoanterior region of the dorsal lateral geniculate nucleus project to the posterior part of area 17, while neurons in the ventroposterior region of the nucleus send their axons to the anterior part of area 17. A similarly inverted projection of anterior and posterior divisions of the lateral posterior thalamic nucleus to visual area 18a was detected. In enucleated rats, the general topography of the projections from the thalamic neurons to the striate and peristriate cortices was indistinguishable from that in the controls. Nonetheless, there was noticeable shrinkage of the dorsal lateral geniculate nucleus and lateral thalamus and a significant decrease in the size of the somata of projecting neurons. Mean somal area of the HRP-labeled neurons in the dorsal lateral geniculate nucleus of enucleated rats was reduced by 19.0% and the mean maximum cell diameter by 14.3% compared with controls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.