Abstract

The dorsal lateral geniculate nucleus (dLGN) is considered as the visual gateway to the visual cortex (VC) and sends collaterals to the thalamic reticular nucleus (RTN) that in turn receives collaterals of the corticofugal feedback projections. At all levels of this thalamocortical circuit there are GABAergic neurons expressing the calcium-buffer parvalbumin (PV). The present study reports for the first time the analysis of in vivo extracellular electrophysiological recordings performed simultaneously in dLGN, RTN and VC of anesthetized wild-type (WT) and parvalbumin-deficient (PVKO) mice. The firing rates of VC and RTN cells were increased in PVKO during spontaneous activity as well as in the presence of a photic stimulation (strobe flash at 2.5Hz). Interestingly, dLGN cells in PVKO did not show significant changes in the rate of firing in comparison to WT. dLGN responses to the light flashes were characterized by ripples of inhibition and phasic excitation/rebound. We have analyzed the pattern of functional interactions between pairs of neighboring cells in VC, dLGN and RTN and across these areas in simultaneously recorded thalamocortical triplets, with one neuron from each area. We found that in PVKO the strength of the interactions tended to decrease locally, between neighboring cells, but tended to increase across the areas. The combination of these analyses provides new evidence on the important role played by PV-expression in regulating information processing in the central visual pathway suggesting that the ability to process information along parallel channels is decreased in the thalamocortical pathway of PV-deficient mice.This article is part of a Special Issue entitled Neural Coding 2012.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.