Abstract
This paper examines methods to improve visual speech synthesis from a text input using a deep neural network (DNN). Two representations of the input text are considered, namely into phoneme sequences or dynamic viseme sequences. From these sequences, contextual features are extracted that include information at varying linguistic levels, from frame level down to the utterance level. These are extracted from a broad sliding window that captures context and produces features that are input into the DNN to estimate visual features. Experiments first compare the accuracy of these visual features against an HMM baseline method which establishes that both the phoneme and dynamic viseme systems perform better with best performance obtained by a combined phoneme-dynamic viseme system. An investigation into the features then reveals the importance of the frame level information which is able to avoid discontinuities in the visual feature sequence and produces a smooth and realistic output.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.