Abstract

We propose a new vision-based SLAM (simultaneous localization and mapping) technique using both line and corner features as landmarks in the scene. The proposed SLAM algorithm uses an extended Kalman filter based framework to localize and reconstruct 3D line and corner landmarks at the same time and in real time. It provides more accurate localization and map building results than conventional corner feature only-based techniques. Moreover, the reconstructed 3D line landmarks enhance the performance of the robot relocation when robot's pose remains uncertain with corner information only. Experimental results show that the hybrid landmark based SLAM, using lines and corners, produces better performance than corner only one's

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.