Abstract
This paper proposes a path planning visual servoing strategy for a class of cameras that includes conventional perspective cameras, fisheye cameras and catadioptric cameras as special cases. Specifically, these cameras are modeled by adopting a unified model recently proposed in the literature and the strategy consists of designing image trajectories for eye-in-hand robotic systems that allow the robot to reach a desired location while satisfying typical visual servoing constraints. To this end, the proposed strategy introduces the projection of the available image features onto a virtual plane and the computation of a feasible image trajectory through polynomial programming. Then, the computed image trajectory is tracked by using an image-based visual servoing controller. Experimental results with a fisheye camera mounted on a 6-d.o.f. robot arm are presented in order to illustrate the proposed strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.