Abstract

In this paper, an enhanced visual servoing method is designed for a quadrotor unmanned aerial vehicle (UAV) based on virtual plane image moments, under underactuation and tight coupling constraints of UAV kinematics. Moreover, in order to make the UAV search visual targets autonomously in target vicinity during flight, a flexible flight system is developed with stages of take-off, target searching, and image-based visual servoing (IBVS). With dual-camera sensor configuration, the UAV system searches targets from given directions while making localization. A virtual image plane is constructed and image moments are adopted to decouple UAV lateral movement. For a non-horizonal target, homography is utilized to construct the target plane and transform it into a horizonal plane. Backstepping techniques are used to derive the nonlinear controller to realize the IBVS strategy. Stability analysis proves global asymptotic performance of the closed-loop system. Experimental verification shows feasibility of the overall flight system and effectiveness of the visual servoing controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call