Abstract
Zebrafish larva heart microinjection is a widely used technique in cardiac disease study. Compared with intensively researched rotation control of spherical or nearly spherical targets with clear structures, such as cells and embryos, 3-D rotation control of zebrafish larva demands new techniques due to its nontransparent structures and irregular outlines. In this paper, we present a vision-servo system to automate the rotation process of zebrafish larva body. A switched control strategy is adopted to rotate zebrafish larva about the optical axis by using two micropipettes. Precisely rolling about larva body is performed, which involves a custom-designed rotational micromanipulator. A vision detection and online tracking algorithm is also developed to meet the requirement of visual servoing. With designed rotation control strategy, zebrafish larva heart can be adjusted to a desired orientation, which is often towards the injection pipette tip. Experimental results show that the designed system is capable of achieving high success rate of 94% about -axis rotation and 100% about -axis with 50 trails. The system also performs an average speed of 44s/larva with a satisfied rotation accuracy of 0.5 in the horizontal plane and 2.5 about its roll axis. The proposed strategy is effective in flexibly manipulating larvae in 3-D. The developed 3-D rotation control scheme is able to be applied to injection of various organs in zebrafish larva body for different experimental requirements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.