Abstract

This paper introduces a procedure for autonomous landing of a quadrotor on an unmanned surface vehicle in a marine environment. The relative pose and velocity of the vehicle with respect to the quadrotor are estimated using a combination of data coming from a vision system, which recognizes a set of AprilTags located on the vehicle itself, and an ultrasonic sensor, to achieve further robustness during the final landing phase. The considered software and hardware architecture is provided, and the details about the landing procedure are presented. Software-in-the-loop tests were performed as a validation step for the proposed algorithms; to recreate realistic conditions, the movements of the landing platform have been replicated from data of a test in a real marine environment. In order to provide further proof of the reliability of the vision system, a video sequence from a manual landing of a quadrotor on the surface vehicle in a real marine environment has been processed, and the results are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.