Abstract

Many activities necessitate the deployment of attention to specific distances and directions in our three-dimensional (3D) environment. However, most research on how attention is deployed is conducted with two dimensional (2D) computer displays, leaving a large gap in our understanding about the deployment of attention in 3D space. We report how each of four parameters of 3D visual space influence visual search: 3D display volume, distance in depth, number of depth planes, and relative target position in depth. Using a search task, we find that visual search performance depends on 3D volume, relative target position in depth, and number of depth planes. Our results demonstrate an asymmetrical preference for targets in the front of a display unique to 3D search and show that arranging items into more depth planes reduces search efficiency. Consistent with research using 2D displays, we found slower response times to find targets in displays with larger 3D volumes compared with smaller 3D volumes. Finally, in contrast to the importance of target depth relative to other distractors, target depth relative to the fixation point did not affect response times or search efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.