Abstract

Image paragraph generation aims to produce a complete description of a given image. This task is more challenging than image captioning, which only generates one sentence to describe the entire image. Traditional paragraph generation methods usually produce paragraph descriptions based on individual regions that are detected by a Region Proposal Network (RPN). However, relationships among visual objects are either ignored or utilized in an implicit manner in previous work. In this paper, we attempt to explore more visual information through a novel paragraph generation network that explicitly incorporates visual relationship semantics when producing descriptions. First, a novel Relation Pair Generative Adversarial Network (RP-GAN) is designed to locate regions that may cover subjective or objective elements. Then, their relationships are inferred through an attention-based network. Finally, the visual features and relationship semantics of valid relation pairs are taken as inputs by a Long Short-Term Memory (LSTM) network for generating sentences. The experimental results show that by explicitly utilizing the predicted relationship information, our proposed method obtains more accurate and informative paragraph descriptions than previous methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.