Abstract

The photonic nose inspired by the olfactory system is an integrated detection platform constructed by multiple sensing units as channels. However, in the detection of volatile organic compounds (VOCs), the sensing results that cannot be directly readable and the poor ability to distinguish analytes with similar chemical properties are the main challenges faced by this sensor. Here, 8 metal-organic frameworks (MOF)-based photonic crystals are used as the basic sensing units to construct a photonic nose detection platform. The microscopic adsorption of VOCs by MOFs enables the photonic crystals (PCs) to produce macroscopic structural color output, and further makes the photonic nose have specific color fingerprints for different VOCs, the response time of all PCs to VOCs can be within 1s. Through the color fingerprint, the visual identification of VOCs produced by 5 common solvent vapors is realized, and 9 VOCs with similar chemical properties are further distinguished. In addition, the application potential of the photonic nose in the actual environment is verified by identifying different contents of benzene in the paint. It is envisaged that the MOF-based photonic nose has great reference value for the development of intelligent and multi-component synergistic functional gas sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.