Abstract

We propose a holistic approach to the problem of re-identification in an environment of distributed smart cameras. We model the re-identification process in a distributed camera network as a distributed multi-class classifier, composed of spatially distributed binary classifiers. We treat the problem of re-identification as an open-world problem, and address novelty detection and forgetting. As there are many tradeoffs in design and operation of such a system, we propose a set of evaluation measures to be used in addition to the recognition performance. The proposed concept is illustrated and evaluated on a new many-camera surveillance dataset and SAIVT-SoftBio dataset.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.