Abstract

Fluorodeoxyglucose (FDG) positron emission tomography (PET) is useful to predict Alzheimer's disease (AD) conversion in patients with mild cognitive impairment (MCI). However, few studies have examined the extent to which FDG PET alone can predict AD conversion and compared the efficacy between visual and computer-assisted analysis directly. The current study aimed to evaluate the value of FDG PET in predicting the conversion to AD in patients with MCI and to compare the predictive values of visual reading and computer-assisted analysis. A total of 54 patients with MCI were evaluated with FDG PET and followed-up for 2years with final diagnostic evaluation. FDG PET images were evaluated by (1) traditional visual rating, (2) composite score of visual rating of the brain cortices, and (3) composite score of computer-assisted analysis. Receiver operating characteristics (ROC) curves were compared to analyze predictive values. Nineteen patients (35.2%) converted to AD from MCI. The area under the curve (AUC) of the ROC curve of the traditional visual rating, composite score of visual rating, and computer-assisted analysis were 0.67, 0.76, and 0.79, respectively. ROC curves of the composite scores of the visual rating and computer-assisted analysis were comparable (Z = 0.463, p = 0.643). Visual rating and computer-assisted analysis of FDG PET scans were analogously accurate in predicting AD conversion in patients with MCI. Therefore, FDG PET may be a useful tool for screening AD conversion in patients with MCI, when using composite score, regardless of the method of interpretation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call