Abstract

Visual Question Answering (VQA) about diseases is an essential feature of intelligent management in smart agriculture. Currently, research on fruit tree diseases using deep learning mainly uses single-source data information, such as visible images or spectral data, yielding classification and identification results that cannot be directly used in practical agricultural decision-making. In this study, a VQA model for fruit tree diseases based on multimodal feature fusion was designed. Fusing images and Q&A knowledge of disease management, the model obtains the decision-making answer by querying questions about fruit tree disease images to find relevant disease image regions. The main contributions of this study were as follows: (1) a multimodal bilinear factorized pooling model using Tucker decomposition was proposed to fuse the image features with question features: (2) a deep modular co-attention architecture was explored to simultaneously learn the image and question attention to obtain richer graphical features and interactivity. The experiments showed that the proposed unified model combining the bilinear model and co-attentive learning in a new network architecture obtained 86.36% accuracy in decision-making under the condition of limited data (8,450 images and 4,560k Q&A pairs of data), outperforming existing multimodal methods. The data augmentation is adopted on the training set to avoid overfitting. Ten runs of 10-fold cross-validation are used to report the unbiased performance. The proposed multimodal fusion model achieved friendly interaction and fine-grained identification and decision-making performance. Thus, the model can be widely deployed in intelligent agriculture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.