Abstract

Load theory assumes that neural activation to distractors in early sensory cortices is modulated by the perceptual load of a main task, regardless of whether task and distractor share the same sensory modality or not. While several studies have investigated the question of load effects on distractor processing in early sensory areas, there is no functional magnetic resonance imaging (fMRI) study regarding load effects on somatosensory stimuli. Here, we used fMRI to investigate effects of visual perceptual load on neural responses to somatosensory stimuli applied to the wrist in a study with 44 participants. Perceptual load was manipulated by an established sustained visual detection task, which avoided simultaneous target and distractor presentations. Load was operationalized by detection difficulty of subtle or clear color changes of one of 12 rotating dots. While all somatosensory stimuli led to activation in somatosensory areas SI and SII, we found no statistically significant difference in brain activation to these stimuli under high compared to low sustained visual load. Moreover, exploratory Bayesian analyses supported the absence of differences. Thus, our findings suggest a resistance of somatosensory processing to at least some forms of visual perceptual load, possibly due to behavioural relevance of discrete somatosensory stimuli and separable attentional resources for the somatosensory and visual modality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call