Abstract

Visual skill learning is commonly considered a manifestation of brain plasticity. Following encoding, consolidation of the skill may result in between-session performance gains. A great volume of studies have demonstrated that during the offline consolidation interval, the skill is susceptible to external inputs that modify the preformed representation of the memory, affecting future performance. However, while basic visual perceptual learning is thought to be mediated by sensory brain regions or their higher-order readout pathways, the possibility of visual-oculomotor interactions affecting the consolidation interval and reshaping visual learning remains uncharted. Motivated by findings mapping connections between oculomotor behavior and visual performance, we examined whether visual consolidation can be facilitated by visual-oculomotor interactions. To this aim, we paired reactivation of an oculomotor memory with consolidation of a typical visual texture discrimination task. Importantly, the oculomotor memory was encoded by learning of the pure motor component of the movement, removing visual cues. When brief reactivation of the oculomotor memory preceded the visual task, visual gains were substantially enhanced compared with those achieved by visual practice per se and were strongly related to the magnitude of oculomotor gains, suggesting that the brain utilizes oculomotor memory to enhance basic visual perception.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call