Abstract
In this paper, we propose a visual object tracking framework, which employs an appearance-based representation of the target object, based on local steering kernel descriptors and color histogram information. This framework takes as input the region of the target object in the previous video frame and a stored instance of the target object, and tries to localize the object in the current frame by finding the frame region that best resembles the input. As the object view changes over time, the object model is updated, hence incorporating these changes. Color histogram similarity between the detected object and the surrounding background is employed for background subtraction. Experiments are conducted to test the performance of the proposed framework under various conditions. The proposed tracking scheme is proven to be successful in tracking objects under scale and rotation variations and partial occlusion, as well as in tracking rather slowly deformable articulated objects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Circuits and Systems for Video Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.