Abstract
Functional magnetic resonance imaging (fMRI) was used to measure local haemodynamic changes (reflecting electrical activity) in human visual cortex during production of the visual motion aftereffect, also known as the waterfall illusion. As in previous studies, human cortical area MT (V5) responded much better to moving than to stationary visual stimuli. Here we demonstrate a clear increase in activity in MT when subjects viewed a stationary stimulus undergoing illusory motion, following adaptation to stimuli moving in a single local direction. Control stimuli moving in reversing, opposed directions produced neither a perceptual motion aftereffect nor elevated fMRI levels postadaptation. The time course of the motion aftereffect (measured in parallel psychophysical tests) was essentially identical to the time course of the fMRI motion aftereffect. Because the motion aftereffect is direction specific, this indicates that cells in human area MT are also direction specific. In five other retinotopically defined cortical areas, similar motion-specific aftereffects were smaller than those in MT or absent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.