Abstract

The manipulation of attention can produce mismatch negativity-like components that are not necessarily connected to the unintentional sensory registration of the violation of probability-based regularity. For clinical purposes, attentional bias should be quantified because it can vary substantially among subjects and can decrease the specificity of the examination. This experiment targets the role of attention in the generation of visual mismatch negativity (vMMN). The visual regularity was generated by a sequence of two radial motions while subjects focused on visual tasks in the central part of the display. Attentional load was systematically varied and had three levels, no-load, easy, and difficult. Rare, deviant, and frequent standard motions were presented with a 10/60 ratio in oddball sequences. Data from 12 subjects was recorded from 64 channels and processed. vMMN was identified within the interval of 142–198 ms. The mean amplitude was evaluated during the aforementioned interval in the parietal and fronto-central regions. A general linear model for repeated measures was applied to the mean amplitude with a three-factor design and showed a significant difference [F(1, 11) = 17.40, p = 0.002] between standard and deviant stimuli and between regions [F(1, 11) = 8.40, p = 0.01]; however, no significant effect of the task [F(2, 22) = 1.26, p = 0.30] was observed. The unintentional detection of irregularity during the processing of the visual motion was independent of the attentional load associated with handling the central visual task. The experiment did not demonstrate an effect of attentional load manipulation on mismatch negativity (MMN) induced by the motion-sequence, which supports the clinical utility of this examination. However, used stimulation paradigm should be further optimized to generate mismatch negativity that is stable enough to be usable not only for group comparisons but also for a single subject assessment.

Highlights

  • A specific component of the event-related potential (ERP), called Mismatch Negativity (MMN), denotes an electrophysiological correlate of the brain’s detection of an unintentional disruption in the regularity of temporal events

  • We examined the correlation between age and the visual mismatch negativity (vMMN), but there was no significant correlation; only within subject factors without age as a covariate were used in the general linear model

  • Our experiments have shown that the vMMN, evoked by a sequence of motions in periphery of the visual field, was not modulated by the difficulty of tasks that subjects solved in the central part of the visual field

Read more

Summary

Introduction

A specific component of the event-related potential (ERP), called Mismatch Negativity (MMN), denotes an electrophysiological correlate of the brain’s detection of an unintentional disruption in the regularity of temporal events. The MMN was described in the auditory modality (Naatanen et al, 1978) as a sensory intelligence within the primary sensory cortex that registers deviant events in a series of standard events (Naatanen et al, 2001). Recent studies on this topic identified an analogous response in the visual modality (vMMN) (Pazo-Alvarez et al, 2003). Similar to the MMN in the auditory modality, utilizing the vMMN may represent a promising approach for the study of implicit perceptual learning in neuropsychiatric patients, as it is an inexpensive and non-invasive method. This method has previously generated positive results in patients with diseases such as Alzheimer disease (Tales and Butler, 2006; Tales et al, 2008), schizophrenia (Urban et al, 2008), depression (Chang et al, 2011), and autism (Cléry et al, 2013) or in abusers of methamphetamine (Hosak et al, 2008; Kremlacek et al, 2008)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call