Abstract

Theories of Visual Mental Imagery (VMI) emphasize the processes of retrieval, modification, and recombination of sensory information from long-term memory. Yet, only few studies have focused on the behavioral mechanisms and neural correlates supporting VMI of stimuli from different semantic domains. Therefore, we currently have a limited understanding of how the brain generates and maintains mental representations of colors, faces, shapes - to name a few. Such an undetermined scenario renders unclear the organizational structure of neural circuits supporting VMI, including the role of the early visual cortex. We aimed to fill this gap by reviewing the scientific literature of five semantic domains: visuospatial, face, colors, shapes, and letters imagery. Linking theory to evidence from over 60 different experimental designs, this review highlights three main points. First, there is no consistent activity in the early visual cortex across all VMI domains, contrary to the prediction of the dominant model. Second, there is consistent activity of the frontoparietal networks and the left hemisphere's fusiform gyrus during voluntary VMI irrespective of the semantic domain investigated. We propose that these structures are part of a domain-general VMI sub-network. Third, domain-specific information engages specific regions of the ventral and dorsal cortical visual pathways. These regions partly overlap with those found in visual perception studies (e.g., fusiform face area for faces imagery; lingual gyrus for color imagery). Altogether, the reviewed evidence suggests the existence of domain-general and domain-specific mechanisms of VMI selectively engaged by stimulus-specific properties (e.g., colors or faces). These mechanisms would be supported by an organizational structure mixing vertical and horizontal connections (heterarchy) between sub-networks for specific stimulus domains. Such a heterarchical organization of VMI makes different predictions from current models of VMI as reversed perception. Our conclusions set the stage for future research, which should aim to characterize the spatiotemporal dynamics and interactions among key regions of this architecture giving rise to visual mental images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.