Abstract
Accurate and robust self-localization is a crucial task for intelligent vehicles. Because of limited access to GPS signals, localization in underground parking lots remains a problem. In this paper, fusion localization for intelligent vehicles using the widely available around view monitoring (AVM) is conducted by Kalman filter based on second-order Markov motion model (KF-MM2). The proposed method consists of two steps, one for visual map construction from AVM images and the other for map-based multi-scale localization. The proposed visual map consists of a series of nodes. Each node encodes both holistic and local visual features computed from AVM images, three-dimensional structure, and vehicle pose. In the localization step, the process of image-level localization is modeled as a Hidden Markov Model (HMM), in which the map nodes are hidden states. The result of image-level localization is calculated using forward algorithm by the given AVM image sequence. Then the metric localization is computed from local features matching. Finally, the metric localization is fused with the prediction by KF-MM2. The proposed method has been verified in two typical underground parking lots. Experimental results demonstrate that the proposed method can achieve an average error of 0.39 m in underground parking lots.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.