Abstract

BackgroundAbnormal knee mechanics frequently follow total knee arthroplasty (TKA) surgery with these deficits amplifying as task demands increase. Knee-kinetic biofeedback could provide a means of attenuating gait abnormalities. The purposes of this study were as follows: (1) to describe the gait characteristic differences between patients with TKA and non-TKA adults during level (low-demand) and decline (high-demand) walking; and (2) where differences existed, to determine the impact of knee-kinetic biofeedback on normalizing these abnormalities. MethodsTwenty participants six months following a primary TKA and 15 non-TKA peers underwent gait analysis testing during level and decline walking. Knee-kinetic biofeedback was implemented to patients with TKA to correct abnormal gait characteristics if observed. ResultsPatients with TKA had lower knee extensor angular impulse (p<0.001), vGRF (p=0.001) and knee flexion motion (p=0.005) compared to the non-TKA group during decline walking without biofeedback. Patients with TKA normalized their knee extensor angular impulse (p=0.991) and peak vGRF (p=0.299) during decline walking when exposed to biofeedback. No between-group differences were observed during level walking. Groups were similar in age, gender, body mass index, physical activity level, pain interference and depression scores (p>0.05). ConclusionPatients with TKA demonstrate abnormal gait characteristics during a high-demand walking task when compared to non-TKA peers. Our findings indicate that knee-kinetic biofeedback can induce immediate improvements in gait characteristics during a high-demand walking task. There may be a potential role for the use of visual knee-kinetic biofeedback techniques to improve gait abnormalities during high-demand tasks following TKA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.