Abstract
Many fields of science and industry collect and analyze multivariate time-varying measurements, e.g., healthcare, geophysics, or finance. Such data is often high-dimensional, correlated, and noisy. Experts are interested in latent components of the dataset, but due to the aforementioned properties these are difficult to obtain. Temporal Blind Source Separation (TBSS) is a suitable and well-established framework for these data. However, the large choice of methods and their tuning parameters impedes the effective use of TBSS in practice. The goal of Visual Analytics (VA) is to create powerful analytic tools by combining the strengths of humans and computers. We designed, developed, and evaluated VA contributions in previous work to support TBSS-related analysis tasks. In this paper, we highlight the benefits and opportunities of VA concepts for statistic-oriented problems using a real-world TBSS application example with a dataset of climate and meteorological measurements in Italy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Data Science, Statistics, and Visualisation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.