Abstract
AbstractWe present a simultaneous localization and mapping (SLAM) algorithm that uses Bézier curves as static landmark primitives rather than feature points. Our approach allows us to estimate the full six degrees of freedom pose of a robot while providing a structured map that can be used to assist a robot in motion planning and control. We demonstrate how to reconstruct the three‐dimensional (3D) location of curve landmarks from a stereo pair and how to compare the 3D shape of curve landmarks between chronologically sequential stereo frames to solve the data association problem. We also present a method to combine curve landmarks for mapping purposes, resulting in a map with a continuous set of curves that contain fewer landmark states than conventional point‐based SLAM algorithms. We demonstrate our algorithm's effectiveness with numerous experiments, including comparisons to existing state‐of‐the‐art SLAM algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.