Abstract

Real-time and drift-free state estimation is essential for the flight control of Micro Aerial Vehicles (MAVs). Due to the vibration caused by the particular flapping motion and the stringent constraints of scale, weight, and power, state estimation divergence actually becomes an open challenge for flapping wing platforms’ longterm stable flight. Unlike conventional MAVs, the direct adoption of mature state estimation strategies, such as inertial or vision-based methods, has difficulty obtaining satisfactory sensing performance on flapping wing platforms. Inertial sensors offer high sampling frequency but suffer from flapping-introduced oscillation and drift. External visual sensors, such as motion capture systems, can provide accurate feedback but come with a relatively low sampling rate and severe delay. This work proposes a novel state estimation framework to combine the merits from both to address such key sensing challenges of a special flapping wing platform—micro flapping wing rotors (FWRs). In particular, a cross-fusion scheme, which integrates two alternately updated Extended Kalman Filters based on a convex combination, is proposed to tightly fuse both onboard inertial and external visual information. Such a design leverages both the high sampling rate of the inertial feedback and the accuracy of the external vision-based feedback. To address the sensing delay of the visual feedback, a ring buffer is designed to cache historical states for online drift compensation. Experimental validations have been conducted on two sophisticated microFWRs with different actuation and control principles. Both of them show realtime and drift-free state estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.