Abstract

Visual object detection has emerged as a critical technology for Unmanned Arial Vehicle (UAV) use due to advances in computer vision. New developments in fields like communication technology and the UAV needs to be able to act autonomously by gathering data and then making choices. These tendencies have brought us to cutting-edge levels of health care, transportation, energy, monitoring, and security for visual image detection and manufacturing endeavors. These include coordination in communication via IoT, sustainability of IoT network, and optimization challenges in path planning. Because of their limited battery life, these gadgets are limited in their range of communication. UAVs can be seen as terminal devices connected to a large network where a swarm of other UAVs is coordinating their motions, directing one another, and maintaining watch over locations outside its visual range. One of the essential components of UAV-based applications is the ability to recognize objects of interest in aerial photographs taken by UAVs. While aerial photos might be useful, object detection is challenging. As a result, capturing aerial photographs with UAVs is a unique challenge since the size of things in these images might vary greatly. The study proposal included specific information regarding the Detection of Visual Images by UAVs (DVI-UAV) using the IoT and Artificial Intelligence (AI). Included in the study of AI is the concept of DSYolov3. The DSYolov3 model was presented to deal with these problems in the UAV industry. By fusing the channel-wise feature across multiple scales using a spatial pyramid pooling approach, the proposed study creates a novel module, Multi-scale Fusion of Channel Attention (MFCAM), for scale-variant object identification tasks. The method's effectiveness and efficiency have been thoroughly tested and evaluated experimentally. The suggested method would allow us to outperform most current detectors and guarantee that the models will be useable on UAVs. There will be a 95 % success rate in terms of visual image detection, a 94 % success rate in terms of computation cost, a 97 % success rate in terms of accuracy, and a 95 % success rate in terms of effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.