Abstract
The study identifies a need for efficient and robust visual clustering approach that can potentially deal with complex supply chain clustering problems. Based on the underlying philosophy of group technology, a growing hierarchical self-organising map algorithm (GHSOM) is proposed to identify a lower two-dimension visual clustering map that can effectively address supply chain clustering problems. The proposed approach provides optimal solutions by decomposing a large-sized supply chain problem into independent, small, manageable problems. It facilitates simple decision-making by exploring similar clusters that are represented by the neighbouring branches in the GHSOM map structure. Unlike other approaches in literature, the proposed approach can further attain good topological ordered representations of the various work order families, to be processed by clusters of supply units along with information on hierarchical sub-cell formation as identifiable from the visually navigable map. The proposed approach has been successfully applied on 16 benchmarked problems. The performance of GHSOM based on grouping efficacy measure outperformed the best results in literature.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.