Abstract
Detecting small defects in curved parts through classical monostatic pulse-echo ultrasonic imaging is known to be a challenge. Hence, a robot-assisted ultrasonic testing system with the track-scan imaging method is studied to improve the detecting coverage and contrast of ultrasonic images. To further improve the image resolution, we propose a visual geometry group-UNet (VGG-UNet) deep learning network to optimize the ultrasonic images reconstructed by the track-scan imaging method. The VGG-UNet uses VGG to extract advanced information from ultrasonic images and takes advantage of UNet for small dataset segmentation. A comparison of the reconstructed images on the simulation dataset with ground truth reveals that the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) can reach 39 dB and 0.99, respectively. Meanwhile, the trained network is also robust against the noise and environmental factors according to experimental results. The experiments indicate that the PSNR and SSIM can reach 32 dB and 0.99, respectively. The resolution of ultrasonic images reconstructed by track-scan imaging method is increased approximately 10 times. All the results verify that the proposed method can improve the resolution of reconstructed ultrasonic images with high computation efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.