Abstract

Cavitation instabilities in a high-speed inducer at a design flow rate were investigated for different cavitation numbers in numerical simulations and visual experiments. On the basis of a shear stress transport k–ω turbulence model and Zwart–Gerber–Belamri cavitation model, the transient cavitating flow in a high-speed centrifugal pump with an inducer is numerically simulated using ANSYS-CFX 15.0 software. Visual experiments were carried out to capture the evolution of cavitating flow in the inducer by using a high-speed camera. The performance and cavitation characteristic curves from numerical simulation agree with those from experiment. With a decreasing cavitation number, the cavitation development in the high-speed inducer goes through incipient cavitation, developing cavitation, critical cavitation, and deteriorated cavitation and presents vortex cavitation, sheet cavitation, cloud cavitation, backflow cavitation, and a cavitation surge. The region having a high vapor volume fraction basically coincides with the region of low local pressure at the same cavitation number. The position of largish blade loading on the inducer changes with the development of cavitation. A cavitation surge as one type of cavitation instability appears in the inducer at lower cavitation numbers. The drop or rise of the head coefficient is affected by an increasing or decreasing cavitation area in the cycle of a cavitation surge.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call