Abstract

BackgroundThe lysosomal storage disorder, Niemann Pick type C1 (NPC1), presents a variable phenotype including neurovisceral and neurological symptoms. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD)-based therapies are presently the most promising route of intervention. While severe cerebellar dysfunction remains the main disabling feature of NPC1, sensory functions including auditory and olfactory ones are also affected. Morphological and functional anomalies of Npc1−/− mouse retina have also been observed, although the functional integrity of the visual pathway from retina to visual cortex is still unsettled. We have addressed this issue by characterizing the visual evoked potential (VEP) response of Npc1−/− mice and determining if/how HPßCD administration influences the VEPs of both Npc1−/− and Npc1+/+ mice.MethodsVEP elicited by a brief visual stimulus were recorded from the scalp overlying the visual cortex of adult (PN, postnatal days 60, 75, 85 and 100) Npc1+/+ and Npc1−/− mice that had received repeated injections of either HPßCD or plain vehicle. The first injection was given at PN4 and was followed by a second one at PN7 and thereafter by weekly injections up to PN49. Cholesterol accumulation and myelin loss were finally assessed by filipin staining and myelin basic protein immunohistochemistry, respectively.Results and discussionWe have found that the transmission of visual signals from retina to visual cortex is negatively influenced by the loss of Npc1 function. In fact, the VEP response of Npc1−/− mice displayed a highly significant increase in the latency compared to that of Npc1+/+ mice. HPßCD administration fully rescued this defect and counteracted the cholesterol accumulation in retinal ganglion cells and dorsal lateral geniculate nucleus neurons, as well as the myelin loss in optic nerve fibers and axons projecting to the visual cortex observed in of Npc1−/− mice. By contrast, HPßCD administration had no effect on the VEP response of Npc1+/+ mice, further strengthening the treatment efficacy.ConclusionsThis study pinpoints the analysis of VEP response as a potentially accurate and non-invasive approach to assess neural activity and visual information processing in NPC1 patients, as well as for monitoring the progression of the disease and assessing the efficacy of potential therapies.Electronic supplementary materialThe online version of this article (doi:10.1186/s13023-015-0348-0) contains supplementary material, which is available to authorized users.

Highlights

  • The lysosomal storage disorder, Niemann Pick type C1 (NPC1), presents a variable phenotype including neurovisceral and neurological symptoms. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD)-based therapies are presently the most promising route of intervention

  • This study pinpoints the analysis of visual evoked potential (VEP) response as a potentially accurate and non-invasive approach to assess neural activity and visual information processing in NPC1 patients, as well as for monitoring the progression of the disease and assessing the efficacy of potential therapies

  • Our results show that the visual stimulus transmission from retina to visual cortex is significantly delayed in Npc1−/− mice compared to age-matched Npc1+/+ and that HPßCD administration rescues this defect, having no apparent effect on Npc1+/+ mice

Read more

Summary

Introduction

The lysosomal storage disorder, Niemann Pick type C1 (NPC1), presents a variable phenotype including neurovisceral and neurological symptoms. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD)-based therapies are presently the most promising route of intervention. The lysosomal storage disorder, Niemann Pick type C1 (NPC1), presents a variable phenotype including neurovisceral and neurological symptoms. Morphological and functional anomalies of Npc1−/− mouse retina have been observed, the functional integrity of the visual pathway from retina to visual cortex is still unsettled We have addressed this issue by characterizing the visual evoked potential (VEP) response of Npc1−/− mice and determining if/how HPßCD administration influences the VEPs of both Npc1−/− and Npc1+/+ mice. Niemann Pick type C1 (NPC1) disease is a rare, inherited lysosomal storage disorder, having variable age of onset and pathophysiological features. The disease arises from mutations affecting the function of the protein encoded by the NPC1 gene that, in cooperation with NPC2, mediates the intracellular trafficking of cholesterol endocytosed via low-density lipoprotein receptors. 95 % of NPC cases are due to mutations in the NPC1 gene, and 5 % to mutations in NPC2 gene [2]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call