Abstract
Sulfite oxidase (SOX) is an essential enzyme in the pathway of the oxidative degradation of sulfur amino acids, and protects cells from sulfite (SO 3 2−) toxicity. Rats do not mimic responses seen in human, because of their relatively high SOX activity levels. Therefore, the present study used SOX deficient rats since they are a more appropriate model for studying sulfite toxicity. The aim of the study was to investigate the effect of sulfite exposure on visual evoked potentials (VEPs) and thiobarbituric acid reactive substances (TBARS) in normal and sulfite oxidase deficient rats. Rats were assigned to six groups ( n = 10 rats/group) as follows; control (C), sulfite (S), sulfite + vitamin E (SE), deficient (D), deficient + sulfite (DS) and deficient + sulfite + vitamin E (DSE). Sulfite oxidase deficiency was established by feeding rats a low molybdenum diet and adding to their drinking water 200 ppm tungsten (W). Sulfite (25 mg/kg) was administered to the animals via their drinking water. At the end of the experimental period, flash visual evoked potentials were recorded, and TBARS, hepatic sulfite oxidase levels and plasma S-sulphonate concentrations were determined. Sulfite treatment caused a significant delay in P1, N1P2, and P3 components of VEPs in the S and DS groups compared with the C group. These prolonged mean latencies of VEP components were reversed by vitamin E treatment in SE and DSE groups. In addition, the mean latencies of P1 and P3 components were increased in SOX deficient groups compared with the C group. Lipid peroxidation was increased in the brain in S, D, DS and DSE groups compared with the control group. There were also significant increases in the retina TBARS levels of S and DS groups. Vitamin E caused a significant decrease in brain and retina TBARS levels of SE and DSE groups with respect to their corresponding controls. However, there were no important changes in amplitudes of other groups. In conclusion, our results showed that sulfite treatment caused an increase in the lipid peroxidation process that was accompanied by changes in VEPs. Furthermore, sulfite exposure resulted in greater lipid peroxidation and more electrophysiological alterations in the SOX deficient rats than in the control rats. Additionally, the reduction of all VEP latencies in the DSE group with respect to the DS group clearly indicated that vitamin E has the potential to prevent sulfite induced-VEP changes arising from dysfunction of the SOX enzyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.